Образовательная программа не актуальна

7M05401 Математика в ГУ им. Шакарима

Дисциплины

  • Научные основы естествознания

    Применение математики в естествознании это - в химии математика служит для решения задач, массовая и объёмная доли компонентов смеси или раствора; в биологии математика применяется при подсчёте численности живых организмов в молекулярной биологии; математика встречается в географии: в масштабировании, при вычислении площади географических объектов.

    Год обучения - 1
    Семестр - 1
    Кредитов - 5
  • Некоторые приложения обобщенных функций

    Основные понятия, определения, обозначения. «Идеал элементы» в функциональном пространстве и ее свойства. Дельта-функция. Равноправие простых и обобщенных функций. Действия над обобщенными функциями. Замена нелинейных переменных. Преобразования функции Дельта, умножения обобщенных функции. Дифференцирование обобщенных функций. Преобразования Лапласа для обобщенных функций. Фундаментальные решения линейно-дифференциальных операторов.

    Год обучения - 1
    Семестр - 1
    Кредитов - 5
  • Педагогика высшей школы

    Формирование основ профессионально-педагогической культуры преподавателя высшей школы, педагогической компетентности в общей проблематике, вопросах методологических и теоретических основ педагогики высшей школы, во владении современными технологиями анализа, планирования и организации обучения, воспитания, коммуникативными технологиями субъект-субъектного взаимодействия преподавателя и магистранта в образовательном процессе вуза

    Год обучения - 1
    Семестр - 1
    Кредитов - 3
  • История и философия науки

    Курс «История и философия науки» исследует историческую эволюцию наук и философские перспективы, которые они формируют. Описываются истоки современной науки, ее социальные и институциональные контексты. Рассматриваются философские проблемы, связанные с мысленными экспериментами, подтверждением и опровержением теорий, происхождением и применением количественных и качественных методов исследований

    Год обучения - 1
    Семестр - 1
    Кредитов - 5
  • Гиперболические уравнения.

    Характеристика дифференциальных уравнений. Нормальная форма гиперболических характеристик первого порядка. Единственность. Область независимости. Описание решении виде Римана. Решение методом итерации задачу Коши гиперболического типа. Задача Коши для квазилинейных систем. Задача Коши для гиперболических уравнении высших порядков. Гиперболическое уравнения нелинейно переменных. Метод Римана, функция Римана. Задача Гаусса для уравнении Эйлер, Дарбу-Пуассона. Принцип максимума гиперболических уравнении. Функция Грин-Адамара. Задача Дарбу уравнения Бицадзе – Лыкова. Задачи Гаусса, Дарбу для уравнения линейно-гиперболического типа.

    Год обучения - 1
    Семестр - 1
    Кредитов - 5
  • Современные проблемы алгебры и теории управления

    Основные алгебраические структуры: кольцо, идеал, радикал и нильрадикал. Делители нуля и нильпотенты. Радикал Джекобсона. Целостные кольца. Обзор современных работ по теории колец. Поля. Характеристика поля. Алгебраическое расширение полей поле разложения многочленов. Строение конечных полей. Автоморфизмы конечных полей. Вычисления на конечных полях. Современные достижения в исследованиях полей.

    Год обучения - 1
    Семестр - 1
    Кредитов - 5
  • Действительный анализ на английском языке

    Абстрактная теория меры, внешняя мера, мера Лебега на числовой прямой, измеримые множества, множества Бореля, множество Кантора, неизмеримые множества. Измеримые функции. Интегральная теория Лебега, теоремы о сходимости сравнение интегралов Римана и Лебега. Теорема Фубини для плоскости. Пространство Гильберта и ряды Фурье. Элементарная теория Гильбертового пространства, ортогональные проекции, теорема Рисса, неравенство Бесселя, лемма Римана-Лебега, тождество Парсеваля, полнота тригонометрических пространств.

    Год обучения - 1
    Семестр - 1
    Кредитов - 5
  • Дидактическая тестология

    Методика разработки дидактических тестов. Основные направления разрабтки дидактических тестов. Эмпирический анализ дидактического теста. Апробация и стандартизация дидактических тестов. Репрезентативность выборки апробации и стандартизации теста. Надежность теста и приемы ее определения.

    Год обучения - 1
    Семестр - 1
    Кредитов - 5
  • Основы научных исследований

    Овладение ключевыми этапами, оценка и выбор актуальных тем исследований; исследовательские цели и обоснование исследований; аналитические и экспериментальные исследования; обработка результатов, статистический анализ. Оформление результатов научной работы и способы информирования научной общественности.

    Год обучения - 1
    Семестр - 1
    Кредитов - 5
  • Психология управления

    Формирование научно-обоснованных представлений о системе психических явлений, психологических переменах поведения и сознательной деятельности человека в современных условиях. Рассматриваются теоретико-практические проблемы психологической науки, категориальная система психологии управления, утверждается историзм психологического анализа практики управления, раскрываются объяснительные принципы анализа управленческой деятельности, структура психологических учений и школ, и другие вопросы психологической науки в приложении к теории и практике управленческой деятельности. Курс позволяет выработать научные представления о современных теориях и подходах в психологии.

    Год обучения - 1
    Семестр - 1
    Кредитов - 3
  • Организация и планирование научно-исследовательских работ

    В данном курсе рассматриваются особенности развития науки в ХХІ веке. Обучение организации и планирования научных работ в Республике Казахстан. Магистранты научатся выбирать методы исследования и обрабатывать результаты научных работ. Узнают как организовывают научные работы в дальних и ближних зарубежьях, таких как Япония, Европа, США, Китай и т.д.

    Год обучения - 1
    Семестр - 1
    Кредитов - 5
  • Иностранный язык (профессиональный)

    Учебно-методический комплекс предназначен для магистрантов 1 курса факультетов или языковых вузов. Краткое содержание дисциплины: В учебном году целью второго иностранного языка (английский язык – В1 -уровень) является достижение В1 уровня английского языка. Уровень В1 можно рассматривать как продолжение и грамматическое пополнение уровня А1, А2. Уровень В1 дает возможность магистрантам углубленно освоить английский язык и свободно передать свои мысли на английском языке и в общении с другими находить общий язык. Уровень В1 охватывает каждую сферу обыденной жизни человека: семья, отношения, работа, стиль жизни, путешествия, еда, спорт и т.д. Учебно-методический комплекс построен с учетом требований, изложенных в действующих программах по иностранному языку.

    Год обучения - 1
    Семестр - 1
    Кредитов - 5
  • Обыкновенные дифференциальные уравнения

    Дифференциальные уравнения первого порядка. Дифференциальные уравнения первого порядка в симметричной форме. Дифференциальные уравнения первого порядка не разрешенные относительно производной. Нормальные системы дифференциальных уравнений. Вопросы существования решений. Линейные дифференциальные уравнения. Общие свойства решений систем дифференциальных уравнений. Аналитические нормальные системы дифференциальных уравнений. Устойчивость решений систем дифференциальных уравнений. Метод нормальных форм в теории дифференциальных уравнений.

    Год обучения - 1
    Семестр - 1
    Кредитов - 5
  • Основы теории устойчивости решений дифференциальных уравнений

    Ознакомление качественными методами исследования поведения решений линейных систем дифференциальных уравнений. Усвоить основные понятия и определения. Устойчивость показателей. Преобразования Ляпунова. Классификация линейных систем по Ляпунова. Первый и второй метод Ляпунова. Основные понятия и теоремы теории устойчивости.

    Год обучения - 1
    Семестр - 2
    Кредитов - 5
  • Основы теории вероятности, математической статистики и случайных процессов

    Аксиомы теории вероятностей. Общее вероятностное пространство. Теорема Каратеодори и ее роль. Общее определение случайных величин. Закон распределения и функция распределения случайной величины. Независимость случайных величин. Формула композиции. Математическое ожидание случайной величины как интеграл Лебега по вероятностной мере. Свойства почти верные. Формула замены переменных в интеграле Лебега.

    Год обучения - 1
    Семестр - 2
    Кредитов - 5
  • Гильбертово пространство

    Ортонормированные системы. Ортогонализация линейно независимости системы. Тригонометрический ряд Фурье. Стремление коэффициентов Фурье к нулю. Дирихле, принцип локализации. Сходимость рядов Фурье в точке. Суммирование рядов Фурье. Приближение непрерывных функций многочленами. Ряды Фурье в гильбертовом пространстве. Полнота ортогональной системы. Изоморфизм гильбертовых пространств. Полнота тригонометрической системы и системы полиномов Лежандра в пространстве.

    Год обучения - 1
    Семестр - 2
    Кредитов - 5
  • Введение в асимптотическую теорию систем линейных дифференциальных уравнений

    Исследования А.М. Ляпунова в теории устойчивости. Некоторые сведения из общей теории обыкновенных дифференциальных уравнений. Характеристические показатели Ляпунова и их свойства. Свойства характеристических показателей линейных систем. Нормальные системы решения. Бинормальные системы. Нижние показатели, их свойства. Преобразования линейных систем, классификация Ляпунова.

    Год обучения - 1
    Семестр - 2
    Кредитов - 5
  • Некоторые вопросы теории аналитических функций

    Основные понятия. Дифференцируемость и ее геометрический смысл. Элементарные функции. Интегралы и степенные ряды. Различные ряды. Вычеты. Обратные и неявные функции. Некоторые открытые вопросы теории представлений аналитических функций. Некоторые вопросы теории приближения функций и ортогональные системы.

    Год обучения - 1
    Семестр - 2
    Кредитов - 5
  • Ортогональная система функций. Ряды Фурье

    Ортогональная система в пространстве ос скалярным произведением. Примеры ортогональных систем. Полнота и замкнутость ортонормированной системы в гильбертовом пространстве. Ряды Фурье. Равенство Парсеваля . Ортогонализация линейно независимой системы. Ортогональность системы тригонометрических функций на отрезке. Тригонометрический полином.

    Год обучения - 1
    Семестр - 2
    Кредитов - 5
  • Линейные уравнения в Банаховом пространстве

    Линейные уравнения. Основные понятия. Уравнения с замкнутым оператором. Нормально разрешимые уравнения с конечномерным нуль-пространством. Линейные преобразования уравнений. Нетеровые уравнения. Фредгольма уравнения. Регуляризация уравнений. Некоторые классические уравнения и граничные задачи приводимые к линейным операторам. Интегральные уравнения. Граничные задачи.

    Год обучения - 1
    Семестр - 2
    Кредитов - 5
  • Кратные и криволинейные интегралы и их применения

    Интеграл Римана в компактах. Двойные интегралы. Вычисления площади с помощью двойного интеграла. Вычисления объемов и поверхностей с помощью двойного интеграла. Тройные интегралы. Вычисления моментов инерции. Криволинейные интегралы. Формула Грина. Вычисления площади с помощью криволинейного интеграла.

    Год обучения - 1
    Семестр - 2
    Кредитов - 5
  • Операционные исчисления

    Функциональные и линейные нормированные пространства. Примеры линейных пространств. Вариация и ее свойства. Уравнения Эйлера. Основная лемма вариационного исчисления. Исследование на экстремум функционалов, зависящих от производных более высокого порядка. Выпуклые множества. Свойства выпуклых множеств. Выпуклые функции. Свойства, примеры. Выпуклые дифференциальные функции. Теорема Фаркаша. Сильно выпуклые функции.

    Год обучения - 1
    Семестр - 2
    Кредитов - 5
  • Математический анализ на многообразиях и стохастический анализ

    Многообразия. Мера многообразия. Основные определения. Поверхность, ориентированные поверхности, касательное множество. Интеграл по ориентированной плоской области. Интегрирование функций по многообразию. Элементарные многообразия п измерений пространство Римана. Точные и замкнутые формы. Теорема Пуанноре. Дифференциальные операторы и интегральные теоремы.

    Год обучения - 1
    Семестр - 2
    Кредитов - 5
  • Вариационное исчисление и его приложения

    Необходимые условия экстремума. Постановка некоторых вариационных задач. Отыскание геодезических на произвольной поверхности. Задача о брахистохроне. Задача о наименьшей поверхности вращения. Функционал в линейном нормированном пространстве, задача оптимального управления. Принцип максимума. Градиентные методы минимизации функции.

    Год обучения - 1
    Семестр - 2
    Кредитов - 5
  • Ряды Фурье и преобразование Фурье

    Ряды Фурье по ортогональным системам. Тригонометрический ряд Фурье как суперпозиция простых гармоник. Комплексная форма записи тригонометрического ряда Фурье. Экспоненциальное (комплексное) преобразование Фурье. Косинус-преобразование и синус-преобразование Фурье. Преобразование Фурье – Бесселя. Свойства преобразования Фурье. Преобразование Фурье элементарных импульсных функций

    Год обучения - 1
    Семестр - 2
    Кредитов - 5
  • Оптимальное управление

    Необходимые сведения из теории дифференциальных уравнений и функционального анализа. Модель Солоу. Постановка задачи оптимального управления. Принцип максимума. Применение принципа максимума к решению экономических задач. Оптимальное использование энергии с учетом качества окружающей среды (одномерная модель).

    Год обучения - 2
    Семестр - 1
    Кредитов - 5
  • Теория рядов и их применения

    Дальнейшие признаки сходимости рядов с постоянными членами. Двойные ряды. Суммирование сходящихся рядов. Суммирование расходящихся рядов. Сходимость рядов Фурье. Применение рядов Фурье в теории изгиба балок. Первая возможность ограничиться двукратным дифференцированием. Вторая возможность ограничиться двукратным дифференцированием. Потенциальная энергия изгиба балки.

    Год обучения - 2
    Семестр - 1
    Кредитов - 5
  • Операторы Штурма-Лиувилля

    Постановка задачи и дифференциальный оператор второго порядка. Нахождение обратной функции Штурм-Лиувилла. Собственный интеграл особенной задачи. Граничные условия для концов особенности и особенные задачи. Задача Штурма-Лиувилля. Собственные значения и собственные функции. Сведение задачи Штурма-Лиувилля к интегральному уравнению.

    Год обучения - 2
    Семестр - 1
    Кредитов - 5
  • Методика преподавания математики на английском языке

    Сформировать систему знаний математической терминологии на английском языке и умения излагать математику на английском языке. Освоение математической терминологии на английском языке, умение читать математические тексты на английском языке, знакомство с технологией написания научных статей на английском языке.

    Год обучения - 2
    Семестр - 1
    Кредитов - 5
  • Внешняя оценка учебных достижении школьников по математике (PISA, SAT,SET, ЕНТ)

    Сформировать систему различных форм оценки учебных достижений. Различные формы оценки результатов учебных достижений, используемые в мировой практике: PISA, SAT, SET, EHT. Их роль и практическое применение. Среднее (начальное, основное и общее среднее) образование в Казахстане: состояние, проблемы и приоритетные направления развития.

    Год обучения - 2
    Семестр - 1
    Кредитов - 5
  • Методы теории функций комплексных переменных

    Освоить основные понятия теории функций комплексного анализа, научиться применять эти методы в решении различных задач. Теория аналитических функций, конформное отображение, приближения в математическом анализе и дифференциальных уравнениях, в уравнениях математической физики.

    Год обучения - 2
    Семестр - 1
    Кредитов - 5
  • Эффективные методы решения заданий по ЕНТ

    Повысить уровень знаний и умений в области указанной дисциплины. Различные методы и приемы, используемые при решении математических тестов. Сравнение этих методов по простоте и временным затратам. Эффективные методы и приемы по качественной подготовки к ЕНТ по математике.

    Год обучения - 2
    Семестр - 1
    Кредитов - 5
  • Научно - дидактические основы составления математических тестов

    Элементы логики. Элементы алгебры. Целые неотрицательные числа. Элементы геометрии и величины. Конструирование и оценка качества дидактических тестов для проведения единого государственного экзамена. Оценка качества дидактических тестов по итогам эксперимента по введению единого государственного экзамена.

    Год обучения - 2
    Семестр - 1
    Кредитов - 5
  • Линейные ограниченные операторы

    Общие свойства линейных ограниченных операторов. Понятие линейного ограниченного оператора, его норма. Понятие линейного ограниченного функционала. Пространство линейных ограниченных операторов. Последовательности операторов. Образы шаров при действии линейных ограниченных операторов. Сопряженные пространства. Общие виды функционалов. Продолжение линейных функционалов. Рефлексивные пространства. Понятие сопряженного оператора.

    Год обучения - 2
    Семестр - 1
    Кредитов - 5
  • Элементы математической теории управления движением

    Системы обыкновенных дифференциальных уравнений (основные понятия). Описание движений с помощью дифференциальных уравнений. Механическое движение материальной точки. Фазовое пространство (общие определения). Устойчивость и неустойчивость равновесия. Устойчивость и неустойчивость движения по Ляпунову. Критерии устойчивости и неустойчивости движений, описываемых нормальной системой линейных дифференциальных уравнений с постоянными коэффициентами.

    Год обучения - 2
    Семестр - 1
    Кредитов - 5
  • Дифференциальные уравнения в приложениях

    Построение дифференциальных моделей и их решений. Стационарный тепловой поток. Дифференциальные модели в экологии. Задача о брахистохроне. Среднее арифметическое, среднее геометрическое и дифференциальное уравнение. Качественные методы исследования дифференциальных моделей. Динамическая интерпретация дифференциальных уравнений второго порядка. Устойчивость точек равновесия и периодических движений. Точки равновесия высшего порядка. Изолированные замкнутые траектории

    Год обучения - 2
    Семестр - 1
    Кредитов - 5
  • Введение в матричный анализ

    Группа нелинейных диагональных и треугольных матриц. Группа обратных матриц. Определитель блочно-треугольных матриц. Ступенчатые матрицы. Квадратный многочлен от трех переменных. Матрица Грамма. Сингулярное разложение матриц. Матрица Фробениуса. Псевдообратные матрицы. Неотрицательные матрицы.

    Год обучения - 2
    Семестр - 1
    Кредитов - 5
  • Элементы спектральной теории линейных операторов

    Самосопряженные операторы. Существование, единственность, ограниченность. Свойства, примеры. Квадратичные формы. Вычисление нормы при помощи квадратичной формы. Теорема Гильберта-Шмидта. Проекционные операторы. Ортогональные проекторы. Свойства. Унитарные операторы. Основные понятия в теории неограниченных операторов. Область определения, график, замыкание, сопряженный оператор. Теорема Хеллингера-Теплица.

    Год обучения - 2
    Семестр - 1
    Кредитов - 5
  • Методы обучения обновленного содержания в системе среднего образования

    Педагогические подходы, методы и технологии применяемые при организации учебного процесса в рамках обновленного образования. Требования к организации педагогического процесса. Особенности организации образовательного процесса по обновленному содержанию. Особенности организации образовательного процесса по обновленному содержанию образования в 5,7 классах. Особенности обучения в малокомплектной школе. Особенности обучения одаренных детей.

    Год обучения - 2
    Семестр - 1
    Кредитов - 5

Результаты обучения

  • Владеет фундаментальным аппаратом анализа на многообразиях и стохастического анализа, методами решения практических и прикладных задач, быть способным применять их в научно-исследовательской работе.
  • Быть способным анализировать и аргументировать на английском языке вопросы по актуальным проблемам профессиональной деятельностью
  • Быть способным правильно сформулировать цели и задачи научного исследования, концепцию научного поиска; составлять план научно-исследовательской работы по отдельным разделам магистерской диссертации, планировать необходимые для выполнения работы ресурсы, оценивать результаты собственной работы; быть способным извлекать полезную научно-техническую информацию из электронных библиотек, реферативных журналов, сети Интернет; быть способным представить собственные новые научные результаты в виде строго обоснованных утверждений
  • Демонстрирует владение аппаратом в решении задач теории устойчивости; готовность применять базовые и специальные знания в области математических, естественных наук в исследовательской деятельности на основе целостной системы научных знаний об окружающем мире
  • Демонстрирует способности решать проблемы высшего педагогического образования и перспектив его дальнейшего развития
  • Демонстрирует базовые знания в области теории вероятностей, математической статистики и случайных процессов
  • Управляет мультикультурными командами, применяя современные подходы к мотивации, осуществлении коммуникаций в кризисных ситуациях, контроля и комплексного управлениям качеством
  • Демонстрирует способность к решению мировоззренческих, социолингвистических и философских проблем в образовательной и профессиональной деятельности
  • Владеть методами фундаментальных направлений математики и быть способным применять их при решений различных прикладных задач, аналитически подходить к решению поставленных задач и уметь представить собственные новые научные результаты в виде строго обоснованных утверждений; исследовать фундаментальный аппарат анализа на многообразиях и стохастического анализа,
  • Демонстрирует базовые знания в области применения теории функций комплексных переменных в прикладных задач, в области теории вероятностей, математической статистики и случайных процессов, в области преподавания математики на английском языке

Похожие ОП

7M05401 Математика и компьютерные науки

Атырауский университет имени Х.Досмухамедова (АтУ им. Досмухамедова)

7M05401 Математика

Торайгыров университет

7M05401 Математика

Университет имени Сулеймана Демиреля

7M05401 Математика

Актюбинский региональный университет имени К.Жубанова (АРГУ им. Жубанова)

7M05401 Актуарная математика

Казахский национальный университет имени аль-Фараби (КазНУ им. аль-Фараби)

7M05401 Математика

Казахский национальный педагогический университет имени Абая (КазНПУ им. Абая)

7M05401 Математика

Евразийский национальный университет имени Л.Н.Гумилева (ЕНУ им. Л. Н. Гумилева)

7M05401 Математика

Карагандинский университет имени академика Е.А.Букетова (КарУ им. Букетова)

7M05401 Математика

Костанайский региональный университет имени Ахмет Байтұрсынұлы (КРУ им. Байтурсынова)

7M05401 Математика

Восточно-Казахстанский университет имени Сарсена Аманжолова (ВКУ им. Аманжолова)

7M05401 Математика

Восточно-Казахстанский технический университет имени Д.Серикбаева (ВКТУ им. Д. Серикбаева)

Top